Diffusion tensor imaging in glioblastoma multiforme and brain metastases: the role of p, q, L, and fractional anisotropy.

نویسندگان

  • W Wang
  • C E Steward
  • P M Desmond
چکیده

BACKGROUND AND PURPOSE Microinvasive tumor cells, which are not detected on conventional imaging, contribute to poor prognoses for patients diagnosed with glioblastoma multiforme (GBM, WHO grade IV). Diffusion tensor imaging (DTI) shows promise in being able to detect this infiltration. This study aims to detect a difference in diffusion properties between GBM (infiltrative) and brain metastases (noninfiltrative). MATERIALS AND METHODS For 49 tumors (30 GBM, 19 metastases), DTI measures (p, q, L, and fractional anisotropy [FA]) were calculated for regions of gross tumor (excluding hemorrhagic and necrotic core), peritumoral edema, peritumoral margin (edema most adjacent to tumor), adjacent normal-appearing white matter (NAWM), and contralateral white matter. Parametric and nonparametric statistical tests were used to determine significance, and receiver operating characteristic (ROC) curve analyses were performed. RESULTS Mean values of p, L, and FA from regions of signal-intensity abnormality differed from those of normal brain in both tumors. The mean q value did not differ significantly compared with that in normal brain in any region in metastases or in adjacent NAWM of GBM. For GBM compared with metastases, q and FA were significantly lower in gross tumor (P < .001) and q was significantly lower in peritumoral margin (P < .001), which may be due to tumor infiltration. Significant overlap was present, which was reflected in the ROC curve analyses (area under the curve values from 0.732 to 0.804). CONCLUSIONS DTI may be used to help differentiate between GBM and brain metastases. The results also suggest that DTI has the potential to assist in detecting infiltrative tumor cells in surrounding brain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global diffusion tensor imaging derived metrics differentiate glioblastoma multiforme vs. normal brains by using discriminant analysis: introduction of a novel whole-brain approach

BACKGROUND Histological behavior of glioblastoma multiforme suggests it would benefit more from a global rather than regional evaluation. A global (whole-brain) calculation of diffusion tensor imaging (DTI) derived tensor metrics offers a valid method to detect the integrity of white matter structures without missing infiltrated brain areas not seen in conventional sequences. In this study we c...

متن کامل

Evaluation of Diffusion Anisotropy and Diffusion Shape in Grading of Glial Tumors

Background: The most common primary tumors of brain are gliomas. Grading of tumor is vital for designing proper treatment plans. The gold standard choice to determine the grade of glial tumor is biopsy which is an invasive method.Objective: In this study, we try to investigate the role of fractional anisotropy (diffusion anisotropy) and linear anisotropy ...

متن کامل

Fiber density index correlates with reduced fractional anisotropy in white matter of patients with glioblastoma.

A quantitative description of white matter fiber attenuation, the fiber density index (FDi) is described. This measure is derived from quantitative analysis of diffusion tensor imaging and reveals an index of the number of fiber paths traversing a region of interest. In this report, FDi is computed in 10 patients with glioblastoma multiforme, in white matter that is peritumoral and contralatera...

متن کامل

Differentiation of Edematous, Tumoral and Normal Areas of Brain Using Diffusion Tensor and Neurite Orientation Dispersion and Density Imaging

Background: Presurigical planning for glioma tumor resection and radiotherapy treatment require proper delineation of tumoral and peritumoral areas of brain. Diffusion tensor imaging (DTI) is the most common mathematical model applied for diffusion weighted MRI data. Neurite orientation dispersion and density imaging (NODDI) is another mathematical model for DWI data modeling.Objective: We stud...

متن کامل

Evaluation of Soft Tissue Sarcoma Tumors Electrical Conductivity Anisotropy Using Diffusion Tensor Imaging for Numerical Modeling on Electroporation

Introduction: There is many ways to assessing the electrical conductivity anisotropyof a tumor. Applying the values of tissue electrical conductivity anisotropyis crucial in numerical modeling of the electric and thermal field distribution in electroporationtreatments. This study aims to calculate the tissues electrical conductivityanisotropy in patients with sarcoma tumors using diffusion tens...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • AJNR. American journal of neuroradiology

دوره 30 1  شماره 

صفحات  -

تاریخ انتشار 2009